Propositional Dynamic Logic - significado y definición. Qué es Propositional Dynamic Logic
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Propositional Dynamic Logic - definición

BRANCH OF LOGIC CONCERNED WITH THE STUDY OF PROPOSITIONS (WHETHER THEY ARE TRUE OR FALSE) THAT ARE FORMED BY OTHER PROPOSITIONS WITH THE USE OF LOGICAL CONNECTIVES, AND HOW THEIR VALUE DEPENDS ON THE TRUTH VALUE OF THEIR COMPONENTS
Sentential logic; Sentential calculus; Propositional logic; Sentence logic; Sentance logic; Propositional Calculus; Truth-functional propositional logic; Propositional calculi; Truth-functional propositional calculus; Classical propositional logic; Exportation in logic; Solvers for propositional logic formulas; History of propositional calculus; Truth functional propositional calculus; Truth functional propositional logic

propositional calculus         
propositional logic         
<logic> (or "propositional calculus") A system of {symbolic logic} using symbols to stand for whole propositions and logical connectives. Propositional logic only considers whether a proposition is true or false. In contrast to predicate logic, it does not consider the internal structure of propositions. (2002-05-21)
Propositional calculus         
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic.

Wikipedia

Propositional calculus

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.